Tech Spotlight: Variable Geometry Turbochargers - Engine Builder Magazine

Tech Spotlight: Variable Geometry Turbochargers

turbocharger

With the Green Revolution upon us, the turbocharger is making big waves. Whether it serves the purpose of making performance vehicles even more high performing, or just making our daily drivers more efficient. Turbocharged cars often experience ‘lag’ at lower speeds, due the time required for sufficient exhaust pressure to build up and spool the turbo. This has often been ameliorated by fitting multiple turbos, as well as several other emerging technologies, such as Volkswagen’s combined twincharger setup, or by electrically driven turbos (often used in racing but not yet on passenger cars).

Another option, though one not employed frequently, is the variable geometry turbocharger- also going by many names such as variable vane or variable nozzle. Variable geometry turbochargers work on the principle of aspect ratio adjustment, essentially varying the ratio of exhaust inlet width to turbine size. This can work in a variety of ways in a variety of designs, but they essentially achieve the same purpose- varying the aspect ratio of the turbine according to rpm levels and desired boost pressure. A turbo with a smaller aspect ratio will be able to spool up faster and deliver greater boost pressure at a lower rpm when the exhaust gas pressure turning the turbine is reduced, but it will not provide a satisfactory amount of airflow at higher rpm. A larger aspect ratio on a turbocharger will allow for sufficient airflow at higher rpm but will considerably increase lag due to its difficulty spooling up at lower rpm. It is for this reason that a sequential twin-turbocharger setup or variable sequential twin-turbocharger(biturbo) setup is often employed on larger performance engines or on engines where the boost-rpm range needs to be as wide as possible.

variable geometry turbocharger
Porsche’s VGT technology used on its turbodiesel variant of the Cayenne. Vanes can be seen adjacent to the turbine.

So, variable geometry turbochargers combine the best features of a biturbo setup into one turbocharger and give an even greater degree of control. To illustrate the mechanics of this technology, visualize the turbine in the center surrounded radially by a series of vanes or flaps that will open or close. When the vanes are near closed, the exhaust gasses flow towards the turbine at a higher velocity, due to the reduced flow area, and are thus able to spin the turbine faster, compared with open vanes that would provide wider inlets and reduce exhaust gas velocity, thus not affecting the turbine with significant enough force. Effectively, the variable vanes lower the boost threshold in this instance, allowing a much larger turbine functionality at reduced rpm. As rpm rises and exhaust pressure increases, the vanes open, so as to allow all exhaust gasses contact with the turbine; should the vanes remain closed or near closed, insufficient space would be allowed and not all air could reach the turbine. The vanes are connected by rods to a disc which spins on a bearing to adjust their position as a unit. The disc/bearing system is controlled by the vane linkage and actuator which is synchronized by a separate ECU for the turbocharger.

Vehicles equipped with Variable Geometry Turbochargers(VGT) offer drastically increased boost pressure over a much wider rpm range. Graphically, the rpm vs. boost pressure plot for a VGT equipped engine is much flatter, with higher end range points than the corresponding plot of a traditional turbocharger. The overall result of VGT technology is a much lower boost threshold on an uncharacteristically large turbocharger.

So far, variable turbine geometry technology has found a home with larger commercial diesel engines. This is because the technology is presently much more feasible on diesel technology due to the fact that diesel engines produce much lower exhaust temperatures. VGTs have been employed on a very limited basis in gasoline engines, but they have experienced problems arising from the fact that vanes and the vane manipulation system is very vulnerable to damage caused by excessive exhaust heat. Advances in engineering and material science have allowed for better application of VGT technology in gasoline engines, though it’s still in its infancy.

Honda equipped the Legend with a VGT system starting in 1988, but it was only in production for two years. Chrysler equipped the Dodge Shelby SCX with a VGT around 1989, but this was a very limited production run. More recently, the Porsche 911 Turbo has employed VGT technology, beginning in 2007. A select few manufacturers do offer VGT systems available for the gasoline engine aftermarket. However, they come with few guarantees and have sometimes resulted in horror stories arising from heat damage.

As the turbocharging trend continues and these devices gain increasing preponderance in passenger cars, expect variable geometry turbocharger technology to be developed more and more. Perhaps VGT technology will become more at home in the performance arena, but it could still be useful in entry level passenger cars. Porsche seems to be leading the VGT charge in gasoline vehicles, so look towards Stuttgart for future developments.

You May Also Like

Factors of Crankshaft Selection

From the high-performance powerplants propelling Top Fuel dragsters to the subdued engines found in family sedans and grocery getters, each crank must be tailored to, and appropriate for, its specific application.

We know a crankshaft plays a critical role in an engine’s performance, converting reciprocating motion into rotary motion while serving as the backbone of the entire system. It must be strong enough to withstand the continuous pounding of rods and pistons, yet possess enough elasticity to absorb vibrations and flex, albeit slightly, when needed.

Shop Solutions March 2024

I always keep a pair of needle nose pliers and a small, straight screwdriver in my blast cabinet to hold small parts when blasting.

Degreeing the Camshaft and Checking Valve-to-Piston Clearance

Jeff McCord of LinCo Diesel Performance walks you through degreeing a camshaft and checking valve-to-piston clearance.

Designing a Better LS Engine

After a customer wanted a Steve Morris Engines’ SMX in an LS version, Steve saw the upside and potential in the market, and a challenge to build a better LS.

Other Posts

Porsche Motorsport to Launch USAC-Sanctioned Endurance Series

Each round will feature a category for the Porsche 911 GT3 Cup car and a class for the Porsche 718 Cayman GT4 RS Clubsport.

The Winners of 25th Annual TX2K

After a week of racing, the 25th TX2K is in the books, and champions have been crowned in the 13 drag racing classes, as well as four roll racing classes. The event, which started in 2000, has become an annual proving ground to see where the mark stands in a multitude of classes, as well

Supercharged 572 cid SMX Engine

Danny Humphreys’ 928 Porsche has a supercharged 572 cid SMX engine in it from Steve Morris Engines, complete with a “shark fin” blower hat that really puts this car and engine combo over the top. We were able to catch up with Danny during day one of Sick Week 2024 at Orlando Speedworld.

Stuffing a Supercharged 572 cid SMX Engine in a Porsche 928

For Danny Humphreys, drag racing is a progressive disease. Ever since he watched Tom Cruise outrun a pimp in a 928 Porsche, he’s wanted the car for himself. As soon as he got one, he pulled the engine and the horsepower has gone up from there. Today, Danny has a supercharged 572 cid SMX engine