How To Maximize The Business Horsepower Available From A Dyno - Engine Builder Magazine

How To Maximize The Business Horsepower Available From A Dyno

To many consumers, dynamometers (flow benches and CNC porting too) represent black art. They believe that dyno testing their engine will somehow magically transform it into a producer of unheard levels of power. Others just want to compare their engine to one they read about in a magazine. And still others are seeking bragging rights. It’s only human nature to want to brag about what you have: bigger is always better.

In the majority of engine shops, a dynamometer is used to improve the products, verify the performance and quality of the engines produced, and in the case of many chassis dynos, troubleshoot drivability issues and emissions calibrations.

On one side of the counter, the consumer often has no understanding of dyno testing in general. If he thinks he does, and is looking for bragging rights or trying to compare his engine’s performance to another, he usually doesn’t understand that the numbers he gets may not be directly comparable to those recorded by another shop in another part of the world. This enthusiast generally has a fixation on peak numbers, without regard to area under the power curve, driveability, idle quality, emissions or a host of other issues that may make the subject engine completely unusable in his application.

Additionally, he may have no knowledge of the other engine, the procedures used to run the dyno test or the facility the testing was done in, all of which have a bearing on the corrected power levels.

On the shop side of the counter, some shops have a dyno to lend a degree of credibility to their operation, or simply to provide a service they can sell. To others, it’s regarded as a costly nuisance. In many cases, neither of these shops have an appreciation for what the dyno could do for them if used correctly.

Unfortunately, a high percentage of professional engine builders who have and/or operate a dyno, do not understand how to properly test an engine. The result is often improper equipment calibration and inaccurate test data from sloppy test procedures.

Some shops even generate phony numbers to please the customer and/or make their product look better than it really is. But as an executive at one of the leading dyno manufacturers explained to me, “You have to be able to handle the truth, even when you just know that it makes more power than that.”

The impact these shoddy practices have on the industry, is to remind us all that horsepower and torque numbers are highly suspect until the source is known.

For those who do understand, the dyno is a valuable tool that gathers data: nothing more, nothing less. What is done with the acquired data – the skills used in translating data into information, and the use of that information to evaluate the tested engine or component – is, as they say, what separates the winners from the losers. The full value of dynamometer testing is only realized when it is used to this end.
There are a number of myths attached to the science of engine testing. One is that the dyno will tell you what you need to do to make more power, and/or will provide you with the skill to make informed changes. Only experience, study and repeat tests will do that. A dyno can be the single biggest investment you can make in confusion, because they have a nasty habit of showing your best th


Another myth is that a dyno makes an engine work harder than it ever will in the real world. While it is true that a test done fully loaded, at a constant rpm or a step test, will put the engine under a heavier load than if it is tested under acceleration, at full throttle, the cylinder pressures and other related factors are the same or very nearly the same, whether on the dyno or in the vehicle.

The engine doesn’t know what it is driving. The only difference between a constant rpm test, and an acceleration test, is that some of the engine’s developed power is used to accelerate the engine itself and the dyno power absorption unit.

On a chassis dyno, additional power is used to accelerate the rest of the driveline, the wheels and tires and the rollers. The engine still develops the power in the cylinders and applies it through the rods to the crankshaft (rotaries excepted).

The more power required to accelerate the engine and other components, the lower the dyno readings will be. The main issue here would be the duration of each test, and how that compares to how the engine is operated in the vehicle. With the computer-controlled dynos in use today, it is possible to come fairly close to real world conditions.

Back To The Basics

One of the more common misconceptions about a dynamometer is that it measures horsepower. WRONG – it only measures TORQUE and RPM

You May Also Like

The Evolution of Pro Mod Diesels

The advancements within the performance diesel world over the past 20 years have been nothing short of phenomenal. In fact, within just the last five to 10 years, that progress has been even more rapid and impressive, but few progressions have been more astonishing than those within the Pro Mod Diesel realm.

To think diesel-powered race cars and trucks would be competitive or even beating gas-powered cars, at one time, seemed unfathomable, but here we are. It’s a reality, and the gap in performance is getting smaller by the day.

To get an overview of Pro Mod Diesel and to dive into the inner workings of a team at the leading edge of Pro Mod Diesel competition, we spoke with Lavon Miller of Firepunk Diesel and got the details of what it has taken over the last several years to do what was previously viewed as improbable, but not impossible.

Top Fuel and Funny Car Engines

They’re the pinnacle of drag racing, and the engine builders, crew chiefs and teams who make these cars function at peak performance all season long are looking at every single area of the engine and the car to make it down the track as fast as possible.

Race Oils

Choosing the correct performance racing oil is essential to ensure optimal performance and longevity of your engine.

Facts About Engine Bearings

The experts all agree that cleanliness is the most important factor during installation, and the lack thereof is the most common problem that leads to bearing failure. But measuring is just as critical.

Does Connecting Rod Length Matter?

Over the years, we’ve gotten asked numerous times about connecting rod length and the impact that has on an engine’s horsepower and durability. As it turns out, this question is often overthought. It’s not so much the connecting rod length that matters as much as it is the correct piston pin height. The connecting rod

Other Posts

LTR Engine Build

This Late Model Engines build is centered around Concept Performance’s new LTR block, which is the first aftermarket as-cast aluminum Gen V LT block. 

A Look at Lead Times

Lead times are no longer months upon months as they were in the middle of 2020 and throughout 2021, but the situation is still of some concern, and it’s forced engine builders to get creative at times.

LS Intake Manifolds

LS swaps are popular for many reasons, but there are a lot of variations and details to sort through – more of them than you may expect – and many of them are associated with the intake manifold.

Choosing the Correct Block for Your LS Engine Build

Whether you’re scouring junkyards, ordering cores, investigating factory options, looking at aftermarket cast iron or aluminum blocks, or spending big bucks on billet LS blocks, you’ve probably noticed it’s been harder to find exactly what you want for the foundation of your LS build than it historically has.