Drag Racing Cylinder Head Selection - Engine Builder Magazine

Drag Racing Cylinder Head Selection

Experts say that the key ingredient is high velocity matched with good flow. But the high flow numbers may blind your customers from seeing the whole picture, so it is up to you to explain.

Some cylinder head experts compare flow numbers to horsepower numbers on a dyno – but guess what? They’re not all equal. So if you see one head with extremely high CFM numbers there are a couple of guesses what may be going on. One cylinder head expert says that the general enthusiast/racer doesn’t know if the numbers are bogus, all he sees is a big number and that’s what he wants.

Larger engines need larger volume ports. And today there are many aftermarket cylinder heads to choose from with larger ports. But before these heads were available, drag racers didn’t have many options as to what size heads to use. Most racers would look for the biggest stock head available and adapt it to their application. Yet one of the biggest problems with using stock heads is that you’re stuck with the port locations and the thickness of the casting, so you can’t get too radical.

Some aftermarket heads have features such as raised runners and relocated ports to improve airflow. Today’s aftermarket "as cast" cylinder heads with unmachined ports often flow better than stock heads that have been ported. And "bare" aftermarket heads are available to allow CNC porting to create almost any shape port you want.

Cylinder head specialist Darin Morgan says that with all the aftermarket heads available choosing a cylinder head today is a difficult task. Unfortunately, a bad choice can cost thousands of dollars in wasted time, says Morgan, and a bad head choice may go unnoticed without ever showcasing how good your engine could have been.

So with all the heads on the market, how do you make the right choice? Morgan says it’s a complex issue with no simple answer.

"I wish I could lay out some quick and easy mathematical equations or some simple guidelines to help, but there simply aren’t any," says Morgan. "It’s a complex issue, which is why so many people have trouble. The best way to grasp what’s most important is to use what I consider the five most important variables used to tune the induction system."

  1. Average velocity;
  2. Individual instantaneous velocities;
  3. Shape/design (maximize a homogeneous velocity profile over the entire port and at the same time promote efficient flow);
  4. Rate of velocity change; and
  5. Airflow.

Morgan says that if you follow his five variables you’ll soon find the most important rules of designing an induction system are: Velocity, Velocity, Shape, Velocity and, finally, Airflow.

We then talked to Curtis Boggs at Race Flow Development (RFD), who says his company takes a bare casting and comes up with its own port designs. He says the design being made determines which head casting will end up being used. "It could be a Dart, Edelbrock or something else – each casting has its own design issues," he says.

Boggs says that most of his customers are professional engine builders who call him to make custom cylinder heads. "Customers who call me tend to call three different shops on a regular basis – we all do high end head work. I can tell who they’ve called by the CFM number they quote," jokes Boggs. "If it’s 20 CFM higher than the laws of physics, then I know who they’ve talked to."

Boggs reiterates what other cylinder head specialists have said about comparing flow numbers to a dyno rating. "It’s become a popular way to sell cylinder heads," says Boggs. "Publications have promoted the CFM number too, probably from a little ignorance (we plead the fifth! – Ed). "While it makes sense that a larger CFM number indicates more air flow, and therefore more power, that’s partially true, but it’s not the most important aspect in selecting a good cylinder head."

Boggs describes how he designs a cylinder head for an application: "Darin Morgan is a friend of mine and we tend to have a similar philosophy on head design. I tend to be a little more generous on valve size than he is, and I also use the percentage of a bore size as criteria for choosing an intake valve. That is also tied to the size of the throat under the valve, which, as far as I’m concerned, is the most critical dimension. That sets the air speed at which the air exits the valve into the chamber.

"It’s all air speed," says Boggs. "If you understand basic fluid dynamics (how things flow and what kind of shapes they like), you’ll have well-shaped ports. And if you’ve designed your port to hit the proper target air speed (it’s going to give you a certain size port to hit that speed if you design around the cross-sectional areas), in general, the CFM number should follow that.

"But the CFM number is the last thing I pay attention to," continues Boggs. "If everything else has lined up properly in designing the port, the CFM number should be there. But it’s not the number you design around."

So if someone claims 20 more CFM, it’s not a good thing? Not necessarily, according to cylinder head experts.

A very good example would be a 500 cid NHRA Pro Stock engine, explains Boggs. He says you can make that cylinder head flow 600 CFM, but for the most part, the front running engines don’t typically flow that much.

"I know of one set of Pro Stock heads that won a race and were top qualifier at several other races last year that flowed only 560 CFM peak. That’s 40 CFM less than what other people claim their heads produce."

So, explain the experts, while you can technically have the same air speed you may not get the same CFM number.

"That is more common than most people realize," says Boggs. "Many Comp Eliminator style heads have 2.5 or 2.6 hp per cubic inch, or even more, and are very efficient engine combinations. But most people would be surprised at the CFM number for these engines. An example would be the current trend for 300-inch motors with SB2 heads in Comp Eliminator. That particular cylinder head only flows 360 CFM. And at that number most people would want to throw that head in the trash, but it’s a record-holding car."
In general, you set air speed in a couple of different places in the cylinder head. The simplest example would the 18-degree SBC. Generally, the smallest part of the intake port through the entire tract will be at the pushrod pinch. That’s why everyone keeps using offset rockers, trying to make the port bigger. The peak airspeed is from the manifold plenum to the back of the valve.

In addition, the throat behind the valve is the second place you can set airspeed. At the pushrod you have a choke point called the primary choke, so that’s the fastest part. And that’s the first part when the air goes too fast that it’ll choke. So you set your air speed at the pushrod and your exit air speed into the chamber at the throat.

Once you know the bore and stroke of an engine, you have a hole with a piston going up and down, you have to fill it with air. So you know what the volume of air you have to move. Now you can calculate back up to the intake tract and figure you have a certain amount of time to move a specified amount of air, so the port has to be, for instance, 3.2 sq.in of area to move that amount of air at 300 ft. per second.

Boggs says you make adjustments in .100" increments of the cross-sectional area, which are small adjustments. If you adjust .100" you could be affecting the air speed by 20 or 30 ft. per second. They’re very precise adjustments.

Boggs and other cylinder head experts say they need to get as much detail as possible from a customer before they can properly design the port. Everything comes under consideration at that point. If it’s a road racecar, for example, you have to consider what track it is. If it’s a drag race engine it’s a little easier because you only have straight-line acceleration.

Subsequently, with drag racing you’re solely worried about acceleration rate say experts. In drag racing applications you can get away with a bigger cylinder head and use more gear, a big converter and so on. But there’s always a balance. If you make it too big, the car won’t ET well. A bigger head will give you more top end power but you can’t launch as well.

Here’s where guys buying cylinder heads from CFM numbers alone get into trouble, says Boggs. If the cylinder head really does have a bigger number, and it’s designed by someone with an uncalibrated flow bench, there’s only one way to do that: The hole has to be bigger! You just can’t change physics.

"So people who are buying the biggest number they can find also have the biggest holes, and the biggest holes aren’t the ones going down the race track the fastest," explains Boggs. "You make most of your ET in a drag race car in the first 60 to 100 feet. You’ve got to get the car going – that’s where the best ET is. Top speed doesn’t mean anything. You’re not accelerating at the top of the track. If you buy a head based on CFM and the air speed is too slow because of the big hole, the car won’t accelerate."

Matt Driskell, Driskell Enterprises, says he looks at how heavy the car is and what’s going to be done with it. "On anything up to a 555 cid to 565 cid engine, I’ll use a head that’s anywhere from 350-360 cc intake runner volume," says Driskell. "If there’s an application where the car is a lot heavier, I might use a 320 or 330 cc range, if it needs a lot of torque and doesn’t need to peak really high in engine rpm."

Driskell says most of what he’s learned about cylinder head work is from his experience at the track and in talking to other experts. "From what I’ve found, you can look at flow numbers all day long in this range (320-360 cc). But it’s just something to look at, in my opinion. You can dry flow the heads all day long and pick the best one but it’ll perform differently out on the track."

If you have a Top Dragster that weighs 1,800 lbs. and you’re trying to go 8.20 to qualify for your Quick 8 Class at your local track, experts say you’d better pay attention to what you’re doing. And that’s where you need a cylinder head built for the application.

Street-Strip guys can buy an as cast aftermarket head and put a valve job in it and go. Nothing really comes out of the box ready to go, which is where engine builders come in. A custom head that is built for a specific drag race application will require a lot more work and effort than a mass produced head that you clean up and ship out.

The criteria changes for what you need to do the higher up you go on the drag racing scale. At the mid-level to high-end drag racing classes, air speed is the real key to pay attention to. Remember: a CFM number is a just a number that someone decided to advertise.

More Most Read Articles…


You May Also Like

The Road to AAPEX Season 2, Ep 3

Just 3,356 Lincoln Blackwoods exist in the world. For comparison, the Ford F-150—the Blackwood’s inspiration—has spawned more than 40 million since its launch in 1948. Guess which one is harder to track down parts for? Babcox Media’s Joe Keene, an ASE-certified technician, has tracked down his fair share of elusive parts, but fixing up a

Just 3,356 Lincoln Blackwoods exist in the world. For comparison, the Ford F-150—the Blackwood’s inspiration—has spawned more than 40 million since its launch in 1948. Guess which one is harder to track down parts for? Babcox Media’s Joe Keene, an ASE-certified technician, has tracked down his fair share of elusive parts, but fixing up a Lincoln Blackwood for a cross-country drive on the Lincoln Highway to AAPEX 2023 is on another level.

The Road to AAPEX Season 2, Ep 2

This year’s Road to AAPEX is a tale of two roads: One metaphorical, paved with questions that face the automotive aftermarket like the impact of EV adoption and sustainability efforts; and one quite literal, that was paved at the start of the 20th century and conceptualized the first transcontinental highway. The Lincoln Highway, which begins

The Road to AAPEX Season 2, Ep 1

Last year, the idea was simple: Find a junker, fix it up with the best from the automotive aftermarket, and drive it to Las Vegas for AAPEX 2022. This year, it’s anything but simple. Related Articles – The Evolution of Pro Mod Diesels – Top Fuel and Funny Car Engines – Race Oils The automotive

What’s a Ford Sidevalve Engine?

It looks like an ordinary inline 4-cylinder flathead engine. Essentially it is, but it has quite a cult following here in the UK.

The Drag & Drive Revolution

Following that first drag-and-drive event back in 2005, spinoffs of Drag Week have been happening all over the country, and the world, both large and small. In recent years, the trend has been completely blowing up!

Other Posts

Facts About Engine Bearings

The experts all agree that cleanliness is the most important factor during installation, and the lack thereof is the most common problem that leads to bearing failure. But measuring is just as critical.

Does Connecting Rod Length Matter?

Over the years, we’ve gotten asked numerous times about connecting rod length and the impact that has on an engine’s horsepower and durability. As it turns out, this question is often overthought. It’s not so much the connecting rod length that matters as much as it is the correct piston pin height. The connecting rod

LTR Engine Build

This Late Model Engines build is centered around Concept Performance’s new LTR block, which is the first aftermarket as-cast aluminum Gen V LT block. 

A Look at Lead Times

Lead times are no longer months upon months as they were in the middle of 2020 and throughout 2021, but the situation is still of some concern, and it’s forced engine builders to get creative at times.