Back to Basics: How to Read a Micrometer - Engine Builder Magazine

Back to Basics: How to Read a Micrometer

There are other types of micrometers, including depth micrometers and inside micrometers. As the names imply, they measure depth and the inside diameters, respectively. Often other tools (such as bore gauges) are used with micrometers to determine sizes so knowing how to read the micrometer is absolutely necessary.

A micrometer is a measuring gauge operated by a screw with 40 threads per inch. This means that one complete revolution of the screw advances one thread or one-fortieth of an inch. 1/40? equals 25 thousandths of an inch or 0.025? (40 x .025? = 1?). The beveled edge of the thimble is divided into 25 equal parts. Each line of the micrometer’s thimbles equals 1/25 of .025” or .001? (one thousandth of an inch). One complete revolution of the thimble therefore equals .025? or one line on the barrel scale. With that in mind, here’s a quick quiz: What is the reading shown in Figure 1?

How do you think you did? Did you come up with .385?? If not, look at the drawing again. Each of the lines on the barrel represents .025 of an inch. Each of the longer lines (the ones with the numbers above them) equals .1? (4 x .025”). So, we’re showing 3 full lines (.300) and 3 of the small lines (.075). We’re up to .375?. The last .010 is indicated by the reading on the thimble. Add that to the .375? and you have a reading of .385?.  Sounds a little confusing I know, but trust me, you’ll get the hang of it the more you do it. Heck, even my wife can read a micrometer now and I still can’t boil water.

If you need more precise measurements, which is quite common in machining, you can achieve readings in ten-thousandths of an inch by using a Vernier scale (optional on some micrometers). The vernier scale, marked on the barrel, has ten divisions, each equaling 1/10 of 1/10,000”. The difference between a thimble division and a vernier division is 1/10,000 of an inch. Therefore, when the zero lines of the vernier exactly coincide with thimble lines (Figure 2), the number on the vernier lines is the difference between the vernier line and the next thimble line in ten-thousandths of an inch. Thus when the fifth line on the vernier coincides with a thimble line, the thimble has moved 5/10,000 of an inch.

Example:

First determine the number of thousandths, as with an ordinary micrometer. Then find a line on the vernier that exactly coincides with a thimble line. By adding the vernier reading to the thousandths reading the actual reading in ten-thousandths of an inch is obtained. The reading shown in Figure 2 is .260? plus .0005? or .2605?.

Hopefully, you haven’t run screaming after all of that. It sounds confusing, but take your time and keep at it. It will make sense.

Jim Tapp is Tech Services Manager for Goodson Tools and an ASE-Certified Master Machinist. figure 1Figure 2

You May Also Like

Shop Solutions April 2024

Shop Solutions provide machine shop owners and engine technicians the opportunity to share their knowledge to benefit the entire industry and their own shops.

Engine Builder and Engine Pro present Shop Solutions in each issue of Engine Builder Magazine and at enginebuildermag.com to provide machine shop owners and engine technicians the opportunity to share their knowledge to benefit the entire industry and their own shops. Those who submit Shop Solutions that are published are awarded a prepaid $100 Visa gift card. Submit your Shop Solution at [email protected]. You must include your name, shop name, shop address and shop telephone number. Submitted Shop Solutions not published will be kept on file and reevaluated for each month’s new entries.

A Different Dyno Design

The dyno is a valuable tool, so it’s nice when an engine builder feels confident in the setup of it. Enter the shipping container engine dyno design.

Properties of Pistons

Pistons are perhaps one of the more sophisticated chunks of metal in the picture. Here’s what you should know.

A New Take on the Rotary Engine

What if we could design a new rotary engine that addresses certain limitations without violating the laws of physics? This is what LiquidPiston has been working at for over a decade.

Perfecting Ring Seal Soup

Using modern honing machines, surface finishes, crosshatch angles, ring materials, and coatings all combine to create a more efficient engine.

Other Posts

Connecting Rod Stress

Connecting rods are subject to constant stress through extreme tensile and compressive loads, each one tied to a different aspect of operation.

Balancing, A State of Equilibrium

The balance of a rotating assembly is critical in every aspect and for every engine.

Factors of Crankshaft Selection

From the high-performance powerplants propelling Top Fuel dragsters to the subdued engines found in family sedans and grocery getters, each crank must be tailored to, and appropriate for, its specific application.

Shop Solutions March 2024

I always keep a pair of needle nose pliers and a small, straight screwdriver in my blast cabinet to hold small parts when blasting.