Three Reasons to Wear a Coat - Engine Builder Magazine

Three Reasons to Wear a Coat

What’s not usually as well known is the incredible versatility that coatings have in dealing with a huge range of problems.

The number of uses for various coatings in performance applications is mind-boggling and nearly limitless, but in order to keep the possibilities cost effective and manageable it’s useful to think about it in terms of the three most common problems that coatings are used to address.

The big three we’re speaking of here are:

1. Friction

2. Heat

3. Corrosion

These three factors play a huge role in determining the power potential, efficiency and durability of an engine. So when evaluating how you might solve a problem or create a benefit where one of these elements is involved, a coating may be worth consideration. There are also cosmetic benefits, of course, because a lot of coatings can be made to look very cool, but for purposes of this article we’ll stick to performance uses.


Friction reducing coatings are commonly used on engine bearings, piston skirts and other similar applications to reduce wear. Durability applications probably offer the most bang for your buck with these sort of coatings, often extending the lifespan of pistons or crankshafts well beyond what they would normally reach.

However, there are also a multitude of less common applications for these sorts of coatings that can be used to enhance performance. Turbocharger units are sometimes coated internally in order to increase power output by reducing resistance to the flow of air, this is a particularly interesting application since people rarely consider the effect friction can have on airflow itself.

Coated Turbo

Another type of coating, applied to the piston wrist pins, allows for decreased friction in an area where an oil film is not present during normal engine operation.

Areas that are not oiled, but whose operations are affected by friction are prime targets for the flexibility of a coating. Conversely, some anti-friction coatings make use of their properties in areas where retention of oil is actually undesirable, for example, a coating can be applied to crankshafts that sheds oil in order to reduce windage. That is not to say that low friction coatings in areas that are oiled regularly should be limited to those areas that need to shed oil. It has been shown that certain low friction coatings applied to key oil lubricated areas can actually lower oil temperature by a significant margin, allowing for the use of thinner oil.


The bulk of useful engine coatings that are not friction reducers are thermal control coatings. These coating generally come in two flavors, the first being thermal barriers. Reflective barriers often increase combustion efficiency when applied to valves, combustion chambers and piston tops. The same type of coating also sees frequent use externally on intake manifolds, helping to keep the incoming air cool, and has varied uses throughout the exhaust system. It’s not hard to imagine a multitude of other applications where keeping heat out could solve a lot of problems.

Coated Piston

The other common class of temperature control coating is the thermal dispersant, designed to help coated areas shed heat more efficiently. Thermal dispersants are especially useful when applied to valve covers or on the oil pan itself, helping to draw unwanted heat from the oil. Outside of the oil system, dispersants have the flexibility to perform a range of functions, from increasing the efficiency of the intake manifold to dramatically extending the lifespan of the valve springs.

Many coating blends designed for these purposes also have good frictional properties. The previously mentioned frictional coating used on turbochargers, for example, is also designed to trap heat inside the unit, increasing thermal expansion and, therefore, power output. In some cases, alcohol engines have made use of a special "Teflon" blend coating on the injector hat to prevent the butterflies from icing over, making use of a frictional blend to address a thermal issue.


Alcohol and methanol engines face special challenges when it comes to corrosion. Coatings using a blend of fluorinated polymers are often used to address the harsh effects of these fuels on piston skirts, bearings and on valve springs. As with the thermal coatings above, many of these are formulated to provide frictional benefits as well, making them doubly useful.

Coated Oil Pump

Other types of anti-corrosive coatings see frequent use in the marine performance field, where the destructive effects of salt water on both iron and aluminum heads and blocks would be otherwise unmanageable.

When considering the use of coatings for any given application it is, perhaps, most important to know that various coating agents can be blended to produce any number of combined effects. An expert can combine thermal, frictional and anti-corrosive properties to produce a formula tailor-made to a wide range of potential specifications. Given the number of engine components that are adversely affected by more than one of these three elements, blended coatings have some of the most intriguing possibilities for creative use.

Professional racing teams make use of a variety of unusual coatings in order to get an edge on the competition in an extremely competitive environment, but it is becoming increasingly common for street rodders and weekend racers to nab a few choice coatings that have the most significant effect on horsepower, or to save cash by extending the lifespan of expensive components that see a lot of wear.

If you’re looking to get some extra value out of your performance engine, coatings are definitely something worth considering.

Source: Dart Machinery

You May Also Like

Shop Solutions February 2023

Check out February’s shop tips and tricks.

Engine and machine shop tips and tricks.

Dowel Removal

This is an easy and clean way to remove hollow dowel pins found in connecting rods or mains. Start tapping the I.D of the dowel with an NPT tap. Once it starts to cut, it will spin the dowel, and with upward pressure, the dowel can be removed and reused.

Honing the LS

Modern honing techniques are as much a performance concern as they are part of engine design, and that’s thanks to the much tighter tolerances and specifications engines need these days. 

LTR Engine Build

This Late Model Engines build is centered around Concept Performance’s new LTR block, which is the first aftermarket as-cast aluminum Gen V LT block. 

LS Intake Manifolds

LS swaps are popular for many reasons, but there are a lot of variations and details to sort through – more of them than you may expect – and many of them are associated with the intake manifold.

LS Cylinder Heads

The LS engine is known for its cylinder heads, and there are tons of options available to upgrade the factory components.

Other Posts

Choosing the Correct Block for Your LS Engine Build

Whether you’re scouring junkyards, ordering cores, investigating factory options, looking at aftermarket cast iron or aluminum blocks, or spending big bucks on billet LS blocks, you’ve probably noticed it’s been harder to find exactly what you want for the foundation of your LS build than it historically has.

Open Loop/Closed Loop and Learning

Closed-loop control can be programmed to either add or subtract up to a certain percentage of fuel in order for the engine to reach the target air/fuel ratio.

Shop Solutions January 2023

Next time you have set of large journal small block Chevy connecting rods to resize, consider honing the big ends of them for a +.002” outside diameter bearing that the LS engines with fracture cap rods use.

Shop Solutions December 2022

Everyone misses occasionally, and this helps avoid dents and damage.