Diesel Engine Glow Plugs

Diesel Engine Glow Plugs: Not Just For Starting Anymore

Since diesel engines ignite by using the heat of combustion, they usually need help when the climate changes to the cold of winter.

Veteran owners of “old school” diesel engines understand what I’m talking about when I mention the “one-minute of silence.”

This was the time every morning when you would turn the ignition switch to the “on” position and wait for the glow plugs to come on and warm for several seconds before the engine could be  started.

In order for the diesel engine to fire in a cold weather, the glow plugs have to come on for a period of time in order to heat the air in the combustion chamber. Anyone who owns a diesel engine will tell you that when the cold weather sets in, your glow plugs had better function.

With modern diesel technology, though, we often forget how spoiled we are today compared to the way things used to be. Now you can go out to your vehicle and cycle the ignition switch to the “on” position and in a period of three to five seconds, you can start your engine. The glow plug used now can reach 1,000 degrees F in three seconds. Consider the dramatic changes that have taken place!

[inpost_gallery post_id=3331 group=”1″ sc_id=”sc1492621916893″]

First of all, in today’s diesel engines, the fuel system has changed. Now diesel engines are equipped with high-pressure fuel injection systems that inject diesel into the combustion chamber with a precisely metered amount of fuel at a precise time. Injection pressures can reach as high as 30,000 psi on common rail systems. Having higher pressures and metered fuel at the right time means more efficiency, less pollution and lower fuel consumption.

In order to utilize these higher injection pressures, the combustion chamber and piston designs had to be changed. Pistons were redesigned to create more efficient combustion of the diesel fuel along with the combustion chamber creating more swirl. These two elements created a much quieter diesel that was more powerful and more fuel efficient, and it didn’t require as much glow plug “on-time” for starting.

I know you’re probably wondering what the big deal is with regard to glow plugs. The biggest reason diesel technology changed was the fact that tighter emissions for diesel engines were coming into effect. The government wanted to reduce the amount of diesel hydrocarbons and nitrogen oxide levels being emitted from diesel engines. Now, this is where the importance of the glow plugs comes in. Not only do the glow plugs cycle to aid the engine during cold weather start up, but also after the engine is cranked – they will continue to cycle to reduce the amount of start-up emissions. This helps reduce the smoke that most diesel engines produce when being cranked on cold mornings.

Even though the engine is running and the glow plug indicator is not illuminated in the dash, the glow plugs will cycle anywhere from 3 to 5 minutes after start up. This helps reduce the amount of start-up emissions by 60 percent and also helps reduce build up of soot that would typically be trapped in the regeneration filter (DPF).

But now, engine manufacturers are advancing glow plug technology to take diesel engine development even further. The glow plug now contains a pressure transducer called a “Glow Combustion Sensor” or GCS.

Not only can the GCS heat the combustion chamber, but it can also measure pressure inside the combustion chamber. Modern electronic diesel engines have always been considered “open-loop” design. This means that the electronics of the vehicle have set parameters under which the engine will run based on inputs received. They inject a metered amount of fuel based on throttle position, MAP, barometric pressure, coolant temp and oil temperature.

But these engines have no oxygen sensor in the exhaust system and therefore can not control situations where the engine may be too rich or too lean. The engine computer only knows that the metered amount should be close to what is needed. The engine does not have any feedback as to whether it was too much fuel or not enough.

By using the GCS, this creates a form of a “closed-loop” design. Now the engine computer can see what is happening inside the combustion chamber by measuring the pressure of combustion and make changes based on inputs received. This would be the equivalent of eight oxygen sensors in the engine monitoring and controlling fuel. Information like this – a “real-time” measurement of pressure in individual cylinders – allows for corrections to fuel during the warm-up period, under boost, during the EGR cycle and while cruising.

This all comes down to the fact that diesel engines are becoming more popular than gasoline. Yes, I said it. Diesel engines are no longer the “clanking” and “knocking” bucket of bolts they use to be. Frankly, when GM introduced its version of the diesel engine in passenger cars back in the ’70s, I think it ruined a whole generation of buyers for diesel engines.

However, the generation is changing. Diesel engines are more efficient and make more power at a lower rpm. Automakers are looking into more diesel-operated vehicles in order to achieve lower fuel economy along with fewer emissions.

The question that I often get is, why do other countries have so many diesel powered vehicles? The only answer that I have found universally is the fact that many of those countries have lower emissions standards than ours.

But it looks as though things are changing. Emissions standards are rising around the world and acceptance of diesel technology is increasing here in the U.S. True, diesel engines do cost more and are more expensive to repair.

At the end of the day, you have to ask yourself this question: “Do you want to give your money to the international companies who are helping us to develop the technology for these engines or do you want to give your money to the oil-producing countries?”

You are going to spend money regardless, it’s just a matter of WHO you are going to give your money to!

You May Also Like

LTR Engine Build

This Late Model Engines build is centered around Concept Performance’s new LTR block, which is the first aftermarket as-cast aluminum Gen V LT block. 

The Chevrolet LT engine family from General Motors is rooted in the early ‘70s, when the LT1 was featured in the Corvette and Camaro Z28. After a 20-year hiatus, GM reintroduced the platform in the early ‘90s. The “LT1 350” came out in 1991, and was distinct from the high-output Gen I LT1 of the 1970s. It displaced 5.7L (350 cu in), and was a two-valve per cylinder pushrod design. The LT1 used a reverse-flow cooling system, which cooled the cylinder heads first, maintaining lower combustion chamber temperatures and allowing the engine to run at a higher compression than its immediate predecessors.

A Look at Lead Times

Lead times are no longer months upon months as they were in the middle of 2020 and throughout 2021, but the situation is still of some concern, and it’s forced engine builders to get creative at times.

LS Intake Manifolds

LS swaps are popular for many reasons, but there are a lot of variations and details to sort through – more of them than you may expect – and many of them are associated with the intake manifold.

Choosing the Correct Block for Your LS Engine Build

Whether you’re scouring junkyards, ordering cores, investigating factory options, looking at aftermarket cast iron or aluminum blocks, or spending big bucks on billet LS blocks, you’ve probably noticed it’s been harder to find exactly what you want for the foundation of your LS build than it historically has.

Open Loop/Closed Loop and Learning

Closed-loop control can be programmed to either add or subtract up to a certain percentage of fuel in order for the engine to reach the target air/fuel ratio.

Other Posts

Top 10 Ken Block Gymkhana Films

Who doesn’t like a little bit of burnt rubber?

America’s Best Engine Shops 2022 | H&H Flatheads

Despite not being a fancy, state-of-the-art set up, Mike and his team at H&H have a great thing going. The equipment does exactly what it needs to, his team is experienced and the shop has built thousands of vintage engines for customers everywhere!

America’s Best Engine Shops 2022 | Choate Engineering Performance

This shop’s dedication to quality engine work, its growth, its machining capabilities and its impact in the diesel industry, all make Choate Engineering Performance well deserving of Engine Builder’s and Autolite’s 2022 America’s Best Diesel Engine Shop award.

America’s Best Engine Shops 2022 | 4 Piston Racing

The 4 Piston Racing facility in Danville, IN houses two buildings – one is 12,000 sq.-ft. and the other is 2,500 sq.-ft. The shop is very heavily focused on Honda cylinder heads and engine work to the tune of 300+ engines and 1,000 cylinder heads annually!