Tech Talk: Why VVT Engines Are Becoming a Reality for Most Vehicles - Engine Builder Magazine

Tech Talk: Why VVT Engines Are Becoming a Reality for Most Vehicles

Variable valve timing can dramatically ­increase low- and high-speed engine torque, ­increase fuel economy and reduce exhaust emissions.

When the topic of variable valve timing (VVT) comes up, few realize that the concept of increasing low- and high-speed engine torque by automatically advancing and retarding valve timing isn’t a recent development.

For example, I recently discovered an old variable camshaft timing gear that I bought during the 1960s featuring a torsion spring device that ­retards valve timing in response to the increased rotating torque needed to turn the camshaft at higher engine speeds.

In theory, I could enjoy the advantages of low-speed torque and high-speed horsepower. In practice, however, it didn’t seem to work due to its reliance on rotating torque.

Nowadays, a historical discussion of the various engineering approaches to variable valve timing could fill an encyclopedia. But computerized engine management systems have made variable valve timing a practical reality for most vehicles.

Coupled with tuned intake and exhaust systems, variable valve timing can dramatically ­increase low- and high-speed engine torque, ­increase fuel economy and reduce exhaust emissions. On the other hand, variable valve timing has brought with it some specific issues concerning engine lubrication and diagnostics.

To keep this text simple and to the point, I’ll leave the more unique VVT designs to the pages of history and electronic valve timing to the pages of the future. In the meantime, let’s look at the basics of how VVT affects engine performance, how it might fail and then follow up with a few tips on how to troubleshoot suspect VVT systems.

See Photo 1.

Valve Vs. Camshaft
The variable “valve” timing that most of us see in our shops is actually variable “camshaft” timing that improves low- and high-speed torque by advancing or retarding the camshaft timing on single overhead camshaft (SOHC) engine applications.

In contrast, some double-overhead camshaft (DOHC) applications perform those same ­functions by separately advancing or retarding the intake and exhaust camshafts.

Fully variable valve timing can be achieved only by using computer-operated solenoids to precisely control the intake and exhaust valve opening and closing events. Although the various combinations of valve timing events are theoretically infinite on an electronically controlled system, its applications are limited due to issues of cost and, in some cases, reliability.

In Theory….
Effective valve timing is very dependent upon the velocities of the intake air flowing through the engine’s intake ports and the exhaust gases flowing out of the engine’s exhaust ports.

On most naturally aspirated engines, the intake valve doesn’t close until the piston begins moving upward on compression stroke.

When intake air is moving slowly at lower engine speeds, the intake valve should close early to prevent the piston from pushing the intake air back into the intake port and manifold.

But when intake air velocities increase with engine speed, the intake valve should close later to help pack more air into the cylinder. In theory, most VVT designs begin to change intake valve timing when intake air velocities begin to dramatically increase at 2,500 to 3,500 rpm. Of course, the PCM’s actual operating strategy depends largely upon the engine design and the speed limitations of the engine.

While exhaust valve timing isn’t as critical to engine performance as intake valve timing, it theoretically can be advanced on DOHC applications to increase valve timing overlap at higher engine speeds and retarded to reduce valve overlap at lower engine speeds.

Valve timing overlap is desirable at higher engine speeds. Simultaneously holding the intake and ­exhaust valves open as the engine goes from ­exhaust to intake stroke allows the engine to make use of the slight negative pressure created by ­exhaust gases exiting the exhaust port to help draw the intake charge into the cylinder.

But at lower engine speeds and gas velocities, high valve overlap produces a loping idle due to exhaust gases pushing back into the intake manifold, plus it reduces engine running compression. Keep in mind also that changing the exhaust valve timing can ­create an “EGR” effect that helps reduce Nitrogen Oxide (NO) emissions in some applications.

[inpost_gallery post_id=4977 group=”1″]

You May Also Like

Shop Solutions – January 2024

Before installing cam bearings, make sure to chamfer any oil holes and clean up back grooves of any sharp edges.

Engine Builder and Engine Pro present Shop Solutions in each issue of Engine Builder Magazine and at to provide machine shop owners and engine technicians the opportunity to share their knowledge to benefit the entire industry and their own shops. Those who submit Shop Solutions that are published are awarded a prepaid $100 Visa gift card. Submit your Shop Solution at [email protected]. You must include your name, shop name, shop address and shop telephone number. Submitted Shop Solutions not published will be kept on file and reevaluated for each month’s new entries.

Shop Solutions December 2023

Check out the latest shop solutions from builders around the country.

The Impact of Fuel Type on Engine Performance

When it comes to choosing the right fuel for your vehicle, several factors should be taken into consideration. These factors include the vehicle’s engine design, manufacturer recommendations, intended usage, and personal preferences.

Component Cleanliness

It can’t be overstated how important the cleaning machines are in the modern engine shop. Shop owners who prioritize effective and efficient cleaning techniques will find success in a more streamlined process.

Billet Blocks and Heads vs. Cast Iron

Billet aluminum has a lower yield strength or higher modulus of elasticity, meaning it will flex, or absorb energy easier under tension or stress than cast aluminum, without incurring permanent damage.

Other Posts

Shop Solutions November 2023

Many times, the flange diameter of the rod nuts will contact the radius around the nut seat on some rods. Some jobs may not warrant the expense of spot facing the nut seat on the connecting rods. In that case, it can be quicker and more effective to just machine a chamfer on the ARP rod nuts.

The CNC Landscape Continues to Grow Inside Engine Shops

Several manufacturers named automation as one of the biggest continuing trends surrounding CNC equipment these days, and it’s clearly a key contributor to a CNC machine’s ability to do more without human interference.

Crankshaft Counterweights

Most engines are internally balanced, meaning all weight adjustment is done on the crankshaft counterweights. However, some stock and modified engines require external balancing due to an increased stroke or larger pistons, and the crankshaft counterweights that would be required to offset the increased inertia simply don’t fit inside the crankcase.

Shop Solutions – October 2023

A written warranty provides benefits for you and your customer. It sets expectations, protects both parties and is a great marketing tool that encourages repeat business.