Ford Using Computer-Printed Parts On and Off the Track - Engine Builder Magazine

Ford Using Computer-Printed Parts On and Off the Track

When Ford’s EcoBoost-powered race car hits the track at the Belle Isle Grand Prix this weekend it will be using engine parts made by a computer printer. Using 3D printing, parts such as the intake manifold on the Ford EcoBoost race engine used in the Chip Ganassi Racing with Felix Sabates Daytona Prototype car are now created on a printer.

Ford’s EcoBoost engine powered Chip Ganassi Racing drivers Scott Dixon, Kyle Larson, Jamie McMurray and Tony Kanaan to victory in the grueling Rolex 24 at Daytona International Speedway.
Ford’s EcoBoost engine powered Chip Ganassi Racing drivers Scott Dixon, Kyle Larson, Jamie McMurray and Tony Kanaan to victory in the Rolex 24 at Daytona International Speedway.

When Ford’s EcoBoost-powered race car hits the track at the Belle Isle Grand Prix this weekend it will be using engine parts made by a computer printer. Using 3D printing, parts such as the intake manifold on the Ford EcoBoost race engine used in the Chip Ganassi Racing with Felix Sabates Daytona Prototype car are now created on a printer.

“3D computer printers have totally changed the development process for our Daytona Prototype race cars,” said Victor Martinez, 3.5-liter EcoBoost race engine engineer. “3D printing has advanced at such lightning speed in recent years that in a matter of hours, we can create real, usable parts for race cars. That’s exactly what we did for the 24 Hours of Daytona earlier this year.”

From road to track, 3D printing accelerates Ford product development
Ford first started to 3D-print decades ago, purchasing the third 3D printer ever made, in 1988. The company first used 3D-printed parts for prototype buttons, switches and knobs. As the technology has improved, the quality of 3D-printed parts has become remarkably precise, and the parts themselves have become increasingly usable.

So smooth and precise has the finishing process become that 3D-printed parts are now used in real-world settings – on prototype vehicles built for durability testing, and on the Ford race car that won the 53rd running of the grueling 24 Hours of Daytona in January.

A 3D-printed intake manifold
A 3D-printed intake manifold.

Ford’s rapid prototype lab: Where product development never stops
In the competitive world of endurance racing, the push for increased reliability and horsepower never stops and, in Ford’s rapid prototype lab, it doesn’t have to.

“We have the ability to design an entirely new part and, one week later, have that part in hand,” said Martinez. “This lets the engineers who develop our cars – both for road and track – spend more time testing, tuning and refining.”

Computer-aided design mockups are sent to Ford’s rapid prototype lab where they are analyzed and input into one of many 3D printers. Roughly one week later, a finished product is ready to be cleaned, painted and used.

“Toward the end of the 2014 TUDOR United SportsCar Championship season, we began to design a number of revisions for our intake manifold,” explained Martinez. “In order to rapidly prototype and prove them out, we 3D-printed several intakes and tested them on our dyno and verified performance on the track. The iterations we created based on the 2014 intake manifold accelerated the development on our 2015 manifold – which is both lighter and brings improved airflow.”

Take it to the track
Leading up to the 2015 24 Hours of Daytona, Ford Performance engineers opted for a 3D-printed intake manifold for the Chip Ganassi Racing Daytona Prototype car. Employing the most advanced intake yet printed, in combination with carbon fiber intake plenums developed by Multimatic®, a strong, reliable and lightweight intake manifold was created for the No. 02 Target Ford EcoBoost-Riley.

“The prototype manifold exceeded our expectations in testing, so in the essence of time we decided to use it for the race,” said Martinez. “We modified our intake with carbon fiber components, painted it, and then it was ready to go to the track.”

Bringing home the hardware
Chip Ganassi Racing, led by drivers Scott Dixon, Kyle Larson, Jamie McMurray and Tony Kanaan, won the Daytona classic – holding off stiff competition in the last hour of the race.

“It was a great day for Ford and a great day for Ganassi,” said Raj Nair, Ford group vice president, Global Product Development. “We had a great car and great drivers. And, of course, we had really great power, reliability and fuel economy out of the EcoBoost engine. This is a great testament to the entire team. I couldn’t be prouder of them.”

Now, Ford aims to repeat this performance at the TUDOR United SportsCar Championship race at the Belle Isle Grand Prix on May 30.

You May Also Like

Shop Solutions January 2023

Next time you have set of large journal small block Chevy connecting rods to resize, consider honing the big ends of them for a +.002” outside diameter bearing that the LS engines with fracture cap rods use.

Engine and Machine Shop Tips and Tricks

DOUBLE BYPASS

For proper block cleaning, the oil bypass valves in Gen 5 and 6 big block Chevys need to be removed. We made a couple different sized “hook” tools for a slide hammer. This tool will easily pull the valves out of the block and sometimes without damaging them.

Shop Solutions December 2022

Everyone misses occasionally, and this helps avoid dents and damage.

Jesel Certified Performance Rebuilds

Engine components are serious investments for any racer and maintaining that investment could be the difference between winning a championship and losing it.

Going the Extra Mile with Cylinder Head Porting

It’s not just the port work alone that creates spectacular cylinder head performance. The most critical areas of a cylinder head are those which pass the most air at the highest speed and for the longest duration. Your bowl area, the valve job, the throat diameter, and combustion chamber are all crucial parts. 

Tight Tolerances and Building Power

As you ascend Mt. Everest, you reach an area called the death zone. Once you climb high enough, the margin of error becomes perilously thin. That death zone also applies to engines. As the horsepower per cubic inch and rpm increase, the margin of error decreases. 

Other Posts

Vortech Supercharged 572 cid Big Block Chevy Engine

When David Pearson of Little Evil Racing shows up at the track with his Pro 275 Foxbody Mustang, people fear him, and for good reason. David has set numerous 275 drag radial world records, and with a Vortech supercharged 572 cid big block Chevy in this Mustang, another record may fall!

CHE Precision Ford Godzilla Trunnion Kit

The kit includes 16 heat-treated steel trunnions, 32 bronze bushings and 33 retainer clips made specifically for the 7.3L Ford Godzilla engine.

Reviewing Callies’ Ford Magnum Crankshaft

There’s no debating that Callies Performance Products manufactures a great crankshaft, among other engine components. We picked out a Callies Magnum Ford crank for our twin-supercharged small block Ford engine build, so we took the opportunity to review exactly what we got from Callies. Related Articles – Larry “Spiderman” McBride’s Suzuki Top Fuel Motorcycle Engine –

Midwest Pro Stock Association Set for Rebirth with 7 Races in 2023

Motorsports pros Rick Jones, Kevin Lawrence, Dave River, and Jeff Wick have announced the rebirth of the Midwest Pro Stock Association (MPSA), a drag racing series formed by Jim Wick in the late 1980s. The series folded following the passing of Wick in 2002.  Related Articles – MAHLE Aftermarket Extends Partnership with Motorsports Icon Casey