5.8L V8 Chevrolet Engine - NASCAR Cup Series

NASCAR Cup Series Chevrolet 5.8L V8 Engine

At the NASCAR Cup Series level, teams are trying to get any extra horsepower they can. Earnhardt Childress Racing uses its engine development philosophy to find half, one and two-horsepower gains for its Chevrolet R07.2 5.8L V8 engine.

At the Monster Energy NASCAR Cup level, it’s no secret that the competition is fierce. Every little thing matters from the driver to pit stops to one of the most important aspects – the engine.

The Chevrolet engine in Cup is called a R07.2. That’s a 5.8L two-valve per cylinder V8. Its roots are in the small block Chevy era from 50-plus years ago. However, over time it’s been refined, and that is the engine the folks at Earnhardt Childress Racing (ECR) put out on the track each week.

“The basic architecture [of the engine] as far as bore spacing, bore sizes, two valves, push rods, etc. has stayed the same,” says Andrew Randolph, technical director for ECR. “What has changed is the materials, tolerances, surface finishes, masses, and things such as that so these engines, which are naturally aspirated, can turn 10,000 RPM and make over 850 hp when unrestricted.”

NASCAR Cup is a true racing series where there is not any kind of balance for performance or any kind of penalties that the sanctioning body puts on engines that over perform. So from an engine development standpoint it’s really great.

CMS Presser

“Whoever can make the best engine is going to have the advantage,” Randolph says. At this level, each manufacturer has to provide a NASCAR-approved block, cylinder head and intake manifold casting. The team, engine shop or engine builder can then modify that casting however they prefer to maximize performance. The only limits being total displacement, bore size and some minimum masses and dimensions on various components.

“The box that you have to operate in and what you can do is actually quite large,” he says. “If you look at engines from different teams you’ll see they are very different and their performance characteristics are very different. It’s a pretty awesome environment for engine development. It’s a huge playground that is fun when you’re doing well, but when you’re not doing well it’s more like work.”

Everything at this level of racing and engine building is purpose designed. “The advantage we have in the racing world over the production world is we know exactly how the engine is going to be used – we know how long is has to run for, the temperature it’s going to run under, the distance it’s going to run, and the engine speed range,” Randolph says. “We can customize the engine for each racetrack for each week based on the particular engine speed characteristics and throttle characteristics of the track and even the driver who is going to be driving it, to make sure that the power curve is optimized to produce minimum lap time at that specific event.”

These engines only have to last for one race, so the objective is to have an engine that has good durability for race distance plus one mile. After the race, the engine is going to come back and is totally disassembled. Many of the parts will never be used again, but some of them will be such as the crankshaft, cylinder head and engine block. Each part is serialized and has a prescribed lifetime to it.

“Wherever there is a performance advantage to make a part where it’s going to shorten the lifetime of it but still get you through the race and produce better performance, the incentive is there to do that,” he says.

ECR does everything it can to make the engine run and get as much power out of it as possible. From the castings, the first thing ECR does is lighten everywhere it can.

“We want to make things as light as they can possibly be, but still be stiff where stiffness is required and still have enough structural integrity to last through the event without any failures,” he says. “For example, an intake manifold casting that comes in the door will weigh 35-40 lbs., and a finished intake manifold that goes on one of these engines will be in the 12-15 lb. range. So that gives you an idea of how much aluminum is sitting on the floor when we are done.”

These performance enhancements that ECR creates is all part of the team’s engine development philosophy, which is not to develop the engine as an 8-cylinder engine, but rather as eight one-cylinder engines.

“We instrument each cylinder with cylinder pressure so we can determine the power contributions of each of the eight cylinders individually,” he says. “Then we will design the cam timing, the exhaust systems, the intake geometry and even sometimes the compression ratio, although we have a maximum compression ratio of 12:1. We design each cylinder individually such that when you add the eight cylinders together you get a power curve that’s optimized for the specific track you’re going to.”

It’s a unique way to develop engines – essentially eight one-cylinder engines that happen to share the same crankshaft – but ECR has been able to make engines light and optimized for specific tracks quite successfully.

17 May 2012 – Engine 1 at the RCR race shop in Welcome, NC. (HHP/Tami Kelly Pope)

In order to reach this height of performance, ECR relies on a number of companies for quality engine parts. Head gaskets at the Cup level are under some of the most stress of any part, and ECR uses Cometic Gaskets. For pistons ECR uses MAHLE. They use both Del West and Xceldyne for valves. Connecting rods are either CP-Carrillo or Pankl. For crankshafts ECR uses Sonny Bryant.

“Valve springs are a very challenging part of these engines,” Randolph says. “A coil valve spring at 9,000 RPM has to get compressed all the way down until the coils are essentially bound to one another and then sprung back open again, but it has to do that 75 times a second and it has to do it for 4 hours. So you can imagine the stress that’s on that part. It’s a very expensive and very challenging part to do. With the kind of engine speeds that we run, we get our valve springs from PSI out of Michigan.”

Piston rings are another major part with the RPMs that ECR turns and the bore sizes that it has, which require a lot of development. ECR uses Total Seal piston rings in its engines.

Also important is the oil at this level. ECR partners with Lucas Oil on those performance developments.

All that development comes down to horsepower on race day. If ECR doesn’t find one or two horsepower a month, it won’t be long before its teams are falling behind.

“It’s a constant search for power and it’s amazing some places where you find it,” Randolph says. “It’s just a constant pressure to look at everything, and we spend a lot of money on instrumentation now because it’s very difficult to find 1- or 2-horsepower improvements. Now we’re down to finding half-horsepower improvements. We need to have systems in place where we can find those reliably. You’re going to find 10 half-horsepower improvements before you find one 5-horsepower improvement.”

The next time you’re watching the Monster Energy NASCAR Cup Series on TV, think about what goes into those engines for an afternoon of racing entertainment.

Engine of the Week is sponsored by Cometic Gasket

To see one of your engines highlighted in this special feature and newsletter, please email Engine Builder managing editor, Greg Jones at [email protected]

You May Also Like

Naturally Aspirated 440 cid LT1 Engine

The folks at Late Model Engines in Houston, TX run a top-notch engine and machine shop. You don’t have to look much further than this naturally aspirated 440 cid LT1 engine build to see what we mean. It’s our Engine of the Week!

We made a trip to Houston, TX last fall for the Production Engine Remanufacturers Association (PERA) annual conference. As part of that week, we decided to give ourselves a few extra days to visit some engine shops in the area. One shop we knew we had to see in person was Late Model Engines.

All-Billet 903 cid Pro Mod Engine

Pat Musi of Musi Racing Engines has been meticulously developing and tweaking his 903 cid Pro Mod engine combo since 2010. We got to see the latest and greatest version of this nitrous-powered billet beauty. Check out our first Engine of the Week of 2024!

Pat Musi Racing Engines 903 cid Pro Mod engine
Naturally Aspirated 540 cid Big Block Chevy Engine

After having issues with an engine built elsewhere, a customer came to H Squared Racing Engines to build him a streetcar combo. Utilizing an existing block and crank, H Squared was given the freedom to spec the rest of the engine. Check out the result!

ProCharged Billet V-Twin Hemi Engine

Known well for the shop’s 4.8 and 4.9 bore space Hemi platforms, Noonan Race Engineering took those lessons learned and recently applied them to an all-billet ProCharged V-Twin Hemi engine for nitro motorcycle applications. You don’t want to miss what’s inside this engine!

ProCharged 557 cid Big Block Chevy Engine

This is one of the most popular engine combinations at PAR Racing Engines. Built from 540 cid to 588 cid, this ProCharged 557 cid big block Chevy is a proven setup for Top Sportsman, Top Dragster and even drag-and-drive applications. Check out what makes this such a great build!

Other Posts

Hendrick Motorsports Partners with GROB Systems

Hendrick Motorsports and GROB Systems Inc. have teamed up for a synergistic partnership to bring precision 5-Axis GROB machines to the Concord, NC campus of the 14-time NASCAR Cup Series champions.  Related Articles – VP Racing Partners with Ida Zetterstrom for 2024 NHRA Season – PRI Appoints Michael Good as its New President – New Study Shows Feasibility

Lucas Oil Expands Partnership with RCR and Kyle Busch in 2024

The Indianapolis, IN-based company will partner with RCR and Busch for multiple NASCAR Cup Series races and also continue as the official motor oil of ECR engines.

Dawn Burlew Named First Female President of Watkins Glen International

Dawn Burlew, former director of Corning Incorporated, has been named president of Watkins Glen International. She is the first woman to hold the position. A lifelong New York resident, Burlew is taking on the new position after 40 years at Corning Inc., most recently serving as director of government affairs and director of business development.

Chevrolet Performance Commits to 3-Year Sponsorship of NMCA

A longtime supporter of the NMCA Muscle Car Nationals, Chevrolet Performance has confirmed its commitment to grassroots competition by signing a new three-year deal, continuing as a major sponsor with the national event series dedicated to Detroit Iron. Related Articles – Sick Week 2024 Results – Isky Racing Cams’ Ron Iskenderian Has Passed Away at