Speed of Air Engine Technology

Speed of Air Engine Technology

Speed of Air's patented technology can easily and effectively optimize combustion to deliver a significant increase in power.

While some people seem to think internal combustion engines (ICE) are losing favor to electric powertrains, that’s far from reality. The ICE is alive and well, especially in view of many new developments underway. As a prime example, Speed of Air (SOA) Engine Technologies has found a way to optimize combustion that delivers several startling performance benefits. A significant increase in power is just one among many. In addition, SOA treatments reduce emissions and fuel consumption, along with increasing engine life and fewer service intervals.

Normally, even one of these improvements would be welcome, but integrating all of them together is a remarkable achievement. Notably, SOA’s technology applies to virtually every type of consumer and industrial engine—and all types of fuel.

The difference between a conventional diesel piston head and one treated by Speed of Air (below) is obvious. Besides the indentations, additional heat treating is included on this 2006 CAT 3516 diesel piston.

As examples, we’ll be focusing on diesel engines in particular, as we were able to test a couple different domestic pickups equipped with SOA engine technologies. At first glance, SOA’s patented technology appears to consist of solely a textured or dimpled surface on the piston head. This treatment can be applied as well to the intake manifold and turbocharger compressor blades (if so equipped). Similar to those found on a golf ball for improved aerodynamics, these indentations are both complex and varied in size and shape.

Even though a dimpled golf ball has less drag than a smooth one, on a piston head the effect is somewhat different. It actually creates a slight adhesion for the flame front, slowing it for a longer burn time. Another benefit is to even out the rough, jagged edge of the flame front that is otherwise unstable and extinguishes too early. The reason for doing so is a key element of how SOA technology enhances an ICE.

This closeup of the SOA piston head (left) shows the intricate pattern and shapes of indentations needed to improve the flame front.

 “This instability contributes to elevated emissions, higher fuel consumption and less power,” explains Joe Malfa, technical director for Speed of Air. “With SOA’s technology, the flame front can stay uniform and active for a longer period, allowing for improvement in the combustion process.”

In addition, SOA’s technology includes a proprietary combination of specialized metal coatings. These coatings are used to control combustion chamber temperatures that enhance flame-front travel. Why so?

 “The purpose of the thermal control benefits is to limit the thermal growth of the piston and retain heat in the combustion chamber,” Malfa says. “Heat is power, and when it is absorbed into the heads, block and piston, that power is not being harnessed from the engine.”

The 7.3L Powerstroke engine was rebuilt with some mild performance enhancements, along with SOA’s special treatments.

Taken all together, these SOA treatments create a boundary layer that greatly enhances the flow of the air-fuel mixture and flame front within the combustion chamber walls. As a result, this layer becomes thinner and more turbulent, with the flame front moving closer to the walls. The result is markedly better combustion and far fewer carbon (soot) deposits, minimizing a common problem for diesels in particular. All told, the differences from a conventional ICE are dramatic.

Chris Parkhurst, SOA’s managing director, characterizes the overall significance of these performance gains this way: “We have developed a disruptive and peerless engine technology that enables internal combustion engines to operate with better fuel efficiency, better performance and with substantially reduced emissions.”

As proof, a dyno test on an ’02 Ford with a 7.3L Powerstroke revealed some startling numbers. In stock form, this engine with a manual transmission typically delivers a peak rating of 275 hp at 2,800 rpm and 525 lb./ft. of torque at 1,600 rpm.

While 7.3L are known more for long-term reliability than high-performance potential, this engine is capable of far more power when treated with SOA technology. The power maxed out at more than 565 hp and 1,304 lb.-ft. of torque.

Testing was performed on a SuperFlow chassis dyno at the Truckee Meadows Technology Center in Reno, NV by Tim Anderson of T&A Performance. He had recently completed a two-year restoration of the truck, which included stripping the engine block clean for a rebuild. The cylinder heads were reconditioned by Robert Rubalcava of DEMT (Diesel Engine Machine Technologies) in Belgrade, MT, to stock specifications.

In addition to installing SOA-modified pistons, Anderson used a mild camshaft, and a single Garrett T4 turbocharger with a turbine speed sensor and Turbosmart HyperGate45 wastegate. He also upgraded the injectors from 120cc to 238cc, single-shot, 80%-over nozzles. The exhaust manifolds and turbine housings were modified and coated with a thermal barrier and heat dispersants from SOA as well.

While 7.3L are known more for reliability than performance potential, this engine is capable of far more power when treated with SOA technology. The power maxed out at 565 hp and 1,304 lb.-ft. of torque.

Anderson notes that similar power numbers can be achieved with changes to the cam and increasing the injector size, but not without generating significant amounts of black smoke. This is obviously undesirable, since it not only increases exhaust opacity, but also represents unburnt fuel and lost power.

In contrast, SOA’s treatments achieve these numbers without this obvious drawback. Malfa notes that, “The test results show the engine runs very clean with an opacity average of 4.41 percent, oxygen average of 16.77 and CO2 average of 2.42 percent. NOx average is 360.33 ppm.”

These numbers were accomplished without the use of any emission equipment, such as EGR, DPF, DOC, and the exhaust from the tailpipe was not scrubbed by any after-gas treatment. The truck was also tested for opacity and averaged 12 percent under heavily loaded conditions and less than 5 percent under normal highway speeds. These opacity results would pass California’s requirements for a 2007-or-later truck equipped with after-gas devices.

Anderson points out, too, that these improvements come without having to fly-cut or “de-lip” the bowl in the piston head, which can result in cracking. Engine noise is also noticeably reduced.

How about fuel consumption? Note that the truck was fitted with a five-stage tuner in order to see the difference in the engine response when adding fuel, and to test the impact of the SOA technology on emissions and tailpipe opacity. The tuner was dialed up after each three-minute engine load test on the dyno, along with the emissions and tailpipe opacity calibration.    

The purpose of this test was aimed at simulating pulling a 30,000-lb. trailer load at 50 mph instead of the more common test with maximum hp or torque. The chassis dynamometer was set up to hold the vehicle at 50 mph, wide-open throttle at full load. The engine revs were limited to 2,500 rpm. In order to avoid damage to the dyno, the engine was not run at full power during the full sequence of tests, which lasted for almost an hour. 

Extensive testing indicates that on average, an F-250 Ford Super Duty typically gets a combined fuel consumption (both street and highway) of 13 mpg. Anderson’s truck achieved 22-24 mpg at freeway speeds. A Ford F-350, also fitted with SOA components and coatings, reported as much as 24 mpg or even more.       

In addition to other modifications, Anderson used a single Garrett T4 turbocharger with a turbine speed sensor and Turbosmart wastegate.

While fuel savings from SOA technology will vary with engine type and application, consumption has been reduced in general by as much as 30 percent in constant-speed conditions. Clearly, in commercial applications, SOA can help businesses not only reduce fuel expenses, but also avoid costly EPA fines and the extra expense of meeting emission requirements with after-gas modifications or re-powering.

As for improved engine life and reduced service intervals, Anderson’s newly built truck will need time to validate these benefits, but other SOA engines indicate surprisingly cleaner components after many miles of service. 

For example, in a CAT 3516 mine haul truck engine, oil-change intervals could be extended by nearly double that of a conventional engine. Based on oil samples from the SOA engine versus the stock engine, SOA reduced the soot levels in the oil by 55 percent over a period of 27 months.

The economic impact of this aspect alone saved nearly $250K in operating expenses over 18,000 hours of service life. That figure is based solely on labor and materials for oil changes, not including maintenance or repairs due to engine wear, or lost production due to service down time.

While SOA’s innovations are relatively new to the engine market, they have been in development for a couple decades. Initially applied to V-Twin motorcycle engines, this patented technology is now benefiting much larger and more complex powerplants, backed by years of independent testing. 

All told, SOA has a proven technology with real-world, cost-effective benefits. It shows that the internal combustion engine can still be a viable, long-term option in a rapidly changing world. EB

You May Also Like

Valve Springs

High-frequency fatigue, also known as harmonics, are a ubiquitous challenge in racing engines and can potentially wreak havoc on the valvetrain if left unchecked. Well-designed valve springs play a pivotal role in managing this, ensuring essential stability, and minimizing wear on valvetrain components.

If you want to properly control the movement of your engine’s intake and exhaust valves, you’re going to need valve springs. Precise control over valve timing and lift is essential for optimizing engine compression and overall performance, and in high-performance engines, valves open and close at very fast speeds. For that reason, valve springs also play a significant role in maintaining stability within the valvetrain. They counteract the forces generated by the camshaft, pushrods and rocker arms, ensuring the valves follow the camshaft’s profile accurately.

The Latest on Lifters

For racing, a common trend to eliminate the problems associated with hydraulic lifters are the use of limited or short-travel hydraulic lifters. A reduction in plunger travel, which is usually about half that of a traditional full-travel lifter, reduces the amount of oil required to fill the lifter, which in turn reduces the compression of aerated oil.

Heavy-Duty Diesel Engines, Equipment and Replacement Parts

Relying on OE manufacturers like Caterpillar, Cummins, Detroit Diesel and Waukesha has always been an option, but diesel equipment owners are now more than ever seeking the aftermarket as a more viable solution for replacement parts.

Diesel Piston Technology

Diesel and heavy duty go hand-in-hand. There’s no way around it. High compression causes high cylinder temperatures, with peak cylinder pressure often as high as 2,700 psi (or higher). This high pressure and high heat only have one thing in mind, to beat relentlessly on the first thing to get in the way – the pistons.

Race Oils

Choosing the correct performance racing oil is essential to ensure optimal performance and longevity of your engine.

Other Posts

Compound-Turbo 6.0L Powerstroke Engine

Tyler Lambert’s Ford F-250 started as a project with a simple goal – to extract as much power as possible. Equipped with a 6.0L Powerstroke engine, the truck underwent a series of transformations, including a compound-turbo upgrade, that elevated it to the powerhouse it is now.

6.0L Powerstroke engine
Scheid Diesel is a Diesel Mecca

We recently made the drive to Terre Haute, IN to visit Scheid Diesel and owner Dan Scheid. This diesel engine and machine shop is one of three locations Scheid operates, and has the capability to everything in-house from fuel lines and injector work to machining and general repair and much more. Check out why Scheid

Thousands Oppose California’s Mandate Banning New Gas-Powered Vehicle Sales

SEMA members and industry consumers send EPA over 5,000 letters in opposition to ACC II Waiver

Diesel Daydreams at R&R Engine and Machine

We’ve know R&R Engine and Machine owner Bryan Menke for quite some time. He’s just down the road from our HQ in Akron, OH, so we recently stopped in to see what was new at the shop, which specializes in light, medium and heavy-duty diesel engine work. There’s literally nothing R&R can’t handle, so check