Toyota Oversize Valve Lifter Modification - Engine Builder Magazine

Toyota Oversize Valve Lifter Modification

A Video from John Edwards of Cost Mesa R&D Automotive Machine Shop, Costa Mesa, CA that shows How to Resize OHC Oversize Lifters

According to Edwards, occasionally, you will need to buy lifters to make valve adjustments because the one piece tappet is of a specific height and must be changed. This is the case with most overhead cam engines these days. But what do you do when the lifter you buy is a thousandth or two oversize? You could return it, but that takes time. You can also micropolish it on your lathe to obtain the correct diameter, but how do you hold it?

Here’s how: Take a piece of aluminum stock that is a slightly larger diameter than the lifter and machine it to the lifter ID. Wood can also be used. The total length of the aluminum/wood only needs to be about 3˝ long and you only need to machine the diameter to a length of about 1˝. You can drill a hole all the way through the piece and use a countersink to cut a taper on the end that you machined. Machine a piece of steel or aluminum that is the same diameter of the big end of the countersink hole you machined in the part. Next, machine a wedge and drill and tap it for a 1/2-20 bolt that will slip into the 1/4˝ you drilled in the body. Its length should be only as long as the total length of the body, including the wedge you just made. The wedge should sit flush with the end of the body. The body can also be made from a piece of wood doweling.

Now take the body, remove the bolt and wedge, and cut in two places, 90 degrees apart so they will be able to expand when you tighten the wedge. Insert the bolt and wedge back into the body of the fixture and place the lifter on the machine end. This diameter should be only .001˝ to .002˝ smaller than the lifter ID. Place your fixture into the lathe and use your crankshaft polisher to reduce the diameter of the lifter to the diameter you desire.

You May Also Like

A Different Dyno Design

The dyno is a valuable tool, so it’s nice when an engine builder feels confident in the setup of it. Enter the shipping container engine dyno design.

Over eight years ago, the guys at TRE Racing Engines were busy building engines, machining parts and testing engines on the dyno – it was a day just like any other. However, for owner Taylor Lastor, and the rest of the employees at TRE Racing Engines in Cleveland, TX, this particular day would end much differently than normal.

Shop Solutions March 2024

I always keep a pair of needle nose pliers and a small, straight screwdriver in my blast cabinet to hold small parts when blasting.

Shop Solutions – January 2024

Before installing cam bearings, make sure to chamfer any oil holes and clean up back grooves of any sharp edges.

Shop Solutions December 2023

Check out the latest shop solutions from builders around the country.

Other Posts

Properties of Pistons

Pistons are perhaps one of the more sophisticated chunks of metal in the picture. Here’s what you should know.

A New Take on the Rotary Engine

What if we could design a new rotary engine that addresses certain limitations without violating the laws of physics? This is what LiquidPiston has been working at for over a decade.

Perfecting Ring Seal Soup

Using modern honing machines, surface finishes, crosshatch angles, ring materials, and coatings all combine to create a more efficient engine.

Scheid Diesel-Built Triple-Turbo Billet 6.4L Cummins Super Stock Engine

During our visit to Scheid Diesel we had our mouths wide open in amazement for most of the time, but this Super Stock pulling engine really made our jaws drop! Scheid’s Joe Gasper walked us through the details of this billet triple-turbo 6.4L Cummins build, and it’s our latest Diesel of the Week brought to