Direct Injection Engines and Carbon Deposits - Engine Builder Magazine

Direct Injection Engines and Carbon Deposits

When the early direct-injection engines hit the three-year or 30,000-mile mark, some developed driveablity problems due to carbon buildup on the necks of the intake valves. In the late ‘90s and early 2000s, TSBs related to carbon deposits on the valves were few and far between. There are three reasons why direct-injection engines are more prone to carbon deposits. Read on to find out.

 

Ford EcoBoost EngineOne of the common problems with direct injection engines is their tendency to develop carbon deposits.

Symptom: Misfire codes, stumbling and suspicious fuel trim numbers. On a scan tool, the engine may show a loss in volumetric efficiency. The driver may complain about a loss of power, poor fuel economy and hard starts.

Cause: Carbon deposits on the intake valves. Deposits cause the air to tumble into the combustion chamber, and this turbulence causes the air/fuel mixture to be unevenly distributed. When ignited, the flame front can be erratic, leave unburned fuel and create hot spots in the combustion chamber.

When the early direct-injection engines hit the three-year or 30,000-mile mark, some developed driveablity problems due to carbon buildup on the necks of the intake valves.

In the late ‘90s and early 2000s, TSBs related to carbon deposits on the valves were few and far between. There are three reasons why direct-injection engines are more prone to carbon deposits, one of which is unique to direct injection, while the remaining two are also problems for port fuel injection but are made worse by direct injection.

The main reason is that fuel and added detergents are not hitting the back of the intake valves. By injecting the fuel directly into the cylinder instead of at the back of the valve, the gasoline and detergents can’t clean the valve and port.

Second, leaner mixtures and higher combustion pressures can make the problem worse over time. A direct fuel injection motor produces more energy from a given amount of fuel and air than a port fuel injection engine. Today’s engines operate on a ragged edge between optimal efficiency and a misfire. There is not much room for error, like hot spots in the combustion chamber or a worn spark plug.

When a hot spot or sub-optimal flame front is created due to turbulent air, the amount of unburned fuel in the combustion chamber increases. When the valve opens during the intake stroke, it might come in contact with these byproducts, and, unlike the exhaust valve, the gases passing by are not hot enough to burn them off.

Third, the intake valve goes into the combustion chamber, regardless of whether it is port fuel injected or direct injected. When it does, for that small period of time, the valve is exposed to combustion byproducts that can stick to its neck. If the previous combustion cycle was less than optimal, the intake valve is exposed.

Some direct-injection vehicles with variable valve timing can expose the valve to combustion byproducts as the valves adjust, which creates a scavenging effect to either pull or leave behind a small amount of exhaust gases in the chamber to control NOX emissions. Also, some turbocharged direct-injection engines will leave the intake and exhaust valves open at the same time in order to keep the turbo spinning to reduce lag.

Problem Vehicles: Some direct-injection engines have bad timing. The modern engine typically has variable valve timing and even cylinder deactivation. The engine management system can control when, how long and, in some cases, how deep the valve goes into the combustion chamber. If an intake valve is dropping into a combustion chamber with combustion byproducts or unburned fuel, the valve might be exposed to the precursors that cause carbon buildup.

Positive crankcase ventilation (PCV) systems are sometimes blamed for leaving an oily film on the intake valve that is then baked into carbon. Some blame the valve overlap during the intake stroke that eliminates the need for an EGR valve. Some even have cited cylinder deactivation modes that can create positive pressure.

 

VW-Carbon-deposits-1Solution

There are several fixes available to solve carbon buildup problems.

The first is preventive maintenance. Scheduled oil changes can keep the camshaft actuators working in optimal condition to control the exposure of the intake valves. Spark plug replacement can reduce the amount of unburned fuel in the combustion chamber that can stick to a valve. Fuel injector cleaning can help injectors maintain the correct spray geometry to prevent hot spots.

But the number one method for preventing a carbon buildup problem is updating the engine management software. New software can reduce carbon deposits by reducing the exposure of the valves to conditions that cause carbon buildup by adjusting valve and spark timing.

Don’t assume that you will find a TSB saying that a reflash of the ECM will correct a carbon buildup problem because most of the updates will be contained in normal housekeeping that may never mention a problem. You may even have to check the OEM’s website to see if the vehicle has the latest version of the software.

 

Ford EcoBoost EngineWorst Case Scenario

If the vehicle has reached the point where the deposits are affecting performance, you might be able to remove the deposits with a chemical cleaner injected into the intake. This might work to alleviate problems or become a recommended maintenance item for owners with direct-injected vehicles.

Another option is more invasive and requires removing the intake manifold and removing the deposits with brushes or a sand blaster. This can be costly and not the most profitable job for your shop to take on.

You May Also Like

Shop Solutions – January 2024

Before installing cam bearings, make sure to chamfer any oil holes and clean up back grooves of any sharp edges.

Engine Builder and Engine Pro present Shop Solutions in each issue of Engine Builder Magazine and at enginebuildermag.com to provide machine shop owners and engine technicians the opportunity to share their knowledge to benefit the entire industry and their own shops. Those who submit Shop Solutions that are published are awarded a prepaid $100 Visa gift card. Submit your Shop Solution at [email protected]. You must include your name, shop name, shop address and shop telephone number. Submitted Shop Solutions not published will be kept on file and reevaluated for each month’s new entries.

Shop Solutions December 2023

Check out the latest shop solutions from builders around the country.

The Impact of Fuel Type on Engine Performance

When it comes to choosing the right fuel for your vehicle, several factors should be taken into consideration. These factors include the vehicle’s engine design, manufacturer recommendations, intended usage, and personal preferences.

Component Cleanliness

It can’t be overstated how important the cleaning machines are in the modern engine shop. Shop owners who prioritize effective and efficient cleaning techniques will find success in a more streamlined process.

Billet Blocks and Heads vs. Cast Iron

Billet aluminum has a lower yield strength or higher modulus of elasticity, meaning it will flex, or absorb energy easier under tension or stress than cast aluminum, without incurring permanent damage.

Other Posts

Shop Solutions November 2023

Many times, the flange diameter of the rod nuts will contact the radius around the nut seat on some rods. Some jobs may not warrant the expense of spot facing the nut seat on the connecting rods. In that case, it can be quicker and more effective to just machine a chamfer on the ARP rod nuts.

The CNC Landscape Continues to Grow Inside Engine Shops

Several manufacturers named automation as one of the biggest continuing trends surrounding CNC equipment these days, and it’s clearly a key contributor to a CNC machine’s ability to do more without human interference.

Crankshaft Counterweights

Most engines are internally balanced, meaning all weight adjustment is done on the crankshaft counterweights. However, some stock and modified engines require external balancing due to an increased stroke or larger pistons, and the crankshaft counterweights that would be required to offset the increased inertia simply don’t fit inside the crankcase.

Shop Solutions – October 2023

A written warranty provides benefits for you and your customer. It sets expectations, protects both parties and is a great marketing tool that encourages repeat business.